skip to main content


Search for: All records

Creators/Authors contains: "Ravishankar, Saiprasad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The work examines a combined supervised-unsupervised framework involving dictionary-based blind learning and deep supervised learning or MR image reconstruction from under-sampled k-space data. A major focus of the work is to investigate the possible synergy of learned features in traditional shallow reconstruction using sparsity-based priors and deep prior-based reconstruction. Specifically, we propose a framework that uses an unrolled network to refine a blind dictionary learning based reconstruction. we compare the proposed method with strictly supervised deep learning-based reconstruction approaches on several datasets of varying sized and anatomies. 
    more » « less
  2. Abstract

    Sparsity-based models and techniques have been exploited in many signal processing and imaging applications. Data-driven methods based on dictionary and sparsifying transform learning enable learning rich image features from data and can outperform analytical models. In particular, alternating optimization algorithms have been popular for learning such models. In this work, we focus on alternating minimization for a specific structured unitary sparsifying operator learning problem and provide a convergence analysis. While the algorithm converges to the critical points of the problem generally, our analysis establishes under mild assumptions, the local linear convergence of the algorithm to the underlying sparsifying model of the data. Analysis and numerical simulations show that our assumptions hold for standard probabilistic data models. In practice, the algorithm is robust to initialization.

     
    more » « less